logo

Technology to facilitate business

On-Orbit GPS Receivers: Not Just for Navigation

By Dr. Rebecca Bishop, Senior Scientist, The...

On-Orbit GPS Receivers: Not Just for...

Autosmart Solution: The Flexibility of a Solution Increasing the Accuracy of Infrared Temperature Sensors

By Bram Stelt, CEO of Exergen Global

Autosmart Solution: The Flexibility...

Making Sense of Environmentally-Aware Robots

By John Dulchinos, Vice President, 3d Printing &...

Making Sense of Environmentally-Aware...

With an Aim to Optimize Telematics Security

By Kevin Baltes, Director - Product Cybersecurity...

With an Aim to Optimize Telematics...

Sensor Feedback and the Rise of Collaborative Robots

By Christian Fell, CTO, POSITAL-FRABA

Sensor Feedback and the Rise of Collaborative RobotsChristian Fell, CTO, POSITAL-FRABA

One of the most interesting developments in robotics is the emergence and growing popularity of so-called collaborative robots, or cobots. Cobots, in contrast to traditional industrial robots, are designed to work side-by-side with human workers in a shared workspace. They are typically smaller and less powerful that traditional robots and are equipped with a variety of proximity sensors, load sensors, and other features designed to reduce the risk of dangerous interactions with the people working around them. This focus on safety means that cobots are easier to deploy in a normal factory setting, since they don’t require special fenced off operating areas. Cobots are also designed to be easy to program, so that setup is simplified and a cobot can be easily and quickly reconfigured for new tasks. Cobots have been used to perform repetitive tasks in light assembly, packaging, materials handling, and medical laboratories. Remote andinvasive surgeries are another area of application. Cobots are also used in environments where direct human interaction could be dangerous, including high temperatures, chemically aggressive reagents and toxic pathogens, to name a few. (In particularly harsh environments, cobots designed for normal factory operations may require special measures such as protective wrapping or extended end-effectors to ensure reliable long-term performance.)

Enabling Technologies for the Cobot Revolution

An important factor in the increasing popularity of cobots is that they are typically significantly less expensive than their larger counterparts, with lower power requirements. This reduction in cost has come about through the availability of innovative supporting technologies that enable high-performance, miniaturized components, and control systems. This includes powerful microcontrollers (the ‘brains’ of the devices), compact, precise servomotors and actuators (the ‘muscles’), and sensors that provide the control system with a sense of touch, along with information about the position of objects—including the robots themselves—in the workspace. 

Communications technologies such as industrial Ethernet have also contributed by making it easier to integrate cobots into larger production systems.

Cobots, like more traditional robots, rely on position sensors to provide reliable feedback about their spatial orientation in a complex, dynamic workspace. For arm-mimicking cobots, information about the location of their mechanical components in space is typically provided by sensors called “rotary encoders” mounted at each of the device’s joints.

These sensors monitor rotations at the joints and return digital signals that report angular displacement (absolute encoders) or rate of motion (incremental encoders). The ‘right’ encoders for cobots need to be accurate, reliable, and have excellent dynamic response. They also need to be compact enough to fit into complex joint assemblies. Sensor manufacturers, such as POSITAL-FRABA, have responded to this challenge by developing new sensing technologies, such as magnetic and capacitive rotary encoders that can deliver high levels of performance, along with a wide range of mechanical configurations and communications interfaces, all at affordable prices. Since these encoders feature built-in microcontrollers, their measurement characteristics can be modified in-situ through software updates, without requiring any changes to the mechanical components.

Encoder components must be available in a variety of shapes and configurations to give cobot designers the flexibility they need to build compact, high-performance devices.

Read Also

How GIS Assists Mass Transit

How GIS Assists Mass Transit

Sara Helfrich, GIS Analyst III, MARTA (Metropolitan Atlanta Rapid Transit Authority) Letitia King-Branch, GIS Analyst II, MARTA (Metropolitan Atlanta Rapid Transit Authority)
GIS Technologies Drive Digital Transformation in the AEC Industry

GIS Technologies Drive Digital Transformation in the AEC Industry

Pratibha Basrao, GISP, PMP, Director, Geospatial Solutions
Drones and data: Designing a framework to maximize innovation

Drones and data: Designing a framework to maximize innovation

Jason Diamond, North American Community of Practice Lead for UAVS, Arcadis
ESRI Technology at Newmark

ESRI Technology at Newmark

James Carpenter, Associate Director, GIS, NEWMARK KNIGHT FRANK
Compressed gases to Revolutionize Drone Technology

Compressed gases to Revolutionize Drone Technology

Dave Cadogan, Director Innovation, Air Liquide
ESRI Technology at Newmark

ESRI Technology at Newmark

James Carpenter, Associate Director, GIS, NEWMARK KNIGHT FRANK
Top